String[][] details = { { "ram", "gopal" }, { "varma", "gopal" }, { "chetti", "pandi" }, { "gopal", "ntr" } };
Map<String, String> detailMap = new HashMap<>();
final Map<String, String> map = new HashMap<String, String>(details.length);
for (String[] mapping : details)
{
map.put(mapping[0], mapping[1]);
}
for (int i = 0; i < details.length; i++) {
List<String> convertor = new ArrayList<>();
for (int j = 0; j < details[i].length; j++) {
convertor.add(details[i][j]);
}
detailMap.put(convertor.get(0), convertor.get(1));
}
Method 1: for (Map.Entry<String, String> mapper : detailMap.entrySet()) {
if (mapper.getValue().equals(parent)) {
children = mapper.getKey();
}
}
Method 2:
Iterator itr = map.entrySet().iterator();
while(itr.hasNext()) {
Map.Entry me = (Map.Entry) itr.next();
System.out.println("Key is " + me.getKey() + " Value is " + me.getValue());
}
String value = "indian";
System.out.println(value.length());
char[] chars = value.toCharArray();
StringBuilder sb = new StringBuilder();
for(int i=chars.length-1;i>=0;i--){
sb.append(chars[i]);
}
StringBuilder sb1 = new StringBuilder(value);
sb1.reverse(); System.out.println(sb.toString());
- Arrays
- Arrays.sort()
- Arrays.equals(string1, string2)
- Arrays.toString(inputArray)
- Arrays.deepToString(oneDArray)
- Collections.sort(list);
- Collections.sort(list, Collections.reverseOrder());
- conversion
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.LinkedHashMap;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;
import java.util.Set;
import java.util.TreeMap;
public class T1 {
public static void main(String[] args) {
// add based on frequency Map<Character, Integer> mapper = new HashMap<>();
for (Character c : "malayalam".toCharArray()) {
mapper.put(c, mapper.containsKey(c) ? mapper.get(c) + 1 : 1);
}
//Sort by value - ascending List<Entry<Character, Integer>> list = new ArrayList<>(mapper.entrySet());
list.sort(Entry.comparingByValue());
/
/reverse the listCollections.reverse(list);
Map<Character, Integer> valueAscending = new LinkedHashMap<>();
for (Entry<Character, Integer> entry : list) {
valueAscending.put(entry.getKey(), entry.getValue());
}
//Sort by value - descending java 8
List<Map.Entry<String, Integer>> list1 =new LinkedList<Map.Entry<String, Integer>>(mapper.entrySet());
Collections.sort(list, new Comparator<Map.Entry<String, Integer>>() {
public int compare(Map.Entry<String, Integer> o1,
Map.Entry<String, Integer> o2) {
return (o1.getValue()).compareTo(o2.getValue());
}
});
//Sort by key -descending1.
Map<Character, Integer> keyDescending = new TreeMap<Character, Integer>(Collections.reverseOrder());
keyDescending.putAll(mapper);
//Sort by key -ascending
Map<Character, Integer> keyAscending = new TreeMap<Character, Integer>(mapper);
2.
TreeMap<Integer, String> mapper1 = new TreeMap<Integer, String>();
mapper1.put(1, "x");
mapper1.put(2, "c");
mapper1.put(3, "r");
NavigableMap<Integer, String> nmap = mapper1.descendingMap();
for (NavigableMap.Entry<Integer, String> entry : nmap.entrySet()) {
System.out.println("Key : " + entry.getKey() + " Value : " + entry.getValue());
}
//print the map for (Map.Entry<Character, Integer> c : valueAscending.entrySet()) {
System.out.println(c);
}
for (Character c : mapper.keySet()) {
System.out.println(c + " - " + mapper.get(c));
}
for (Integer c : mapper.values()) {
}
}
}
static double diff(double n, double mid) {
if (n > (mid * mid * mid))
return (n - (mid * mid * mid));
else
return ((mid * mid * mid) - n);
}
static double cubicRoot(double n) {
double start = 0, end = n;
double e = 0.0000001;
while (true) {
double mid = (start + end) / 2;
double error = diff(n, mid);
if (error <= e)
return mid;
if ((mid * mid * mid) > n)
end = mid;
else
start = mid;
}
}
public static double squareRoot(int number) {
double temp;
double sr = number / 2;
do {
temp = sr;
sr = (temp + (number / temp)) / 2;
} while ((temp - sr) != 0);
return sr;
}
//Checks for the largest common prefix
public static String lcp(String s, String t){
int n = Math.min(s.length(),t.length());
for(int i = 0; i < n; i++){
if(s.charAt(i) != t.charAt(i)){
return s.substring(0,i);
}
}
return s.substring(0,n);
}
public static void main(String[] args) {
String str = "acbdfghybdf";
String lrs="";
int n = str.length();
for(int i = 0; i < n; i++){
for(int j = i+1; j < n; j++){
//Checks for the largest common factors in every substring
String x = lcp(str.substring(i,n),str.substring(j,n));
//If the current prefix is greater than previous one
//then it takes the current one as longest repeating sequence
if(x.length() > lrs.length()) lrs=x;
}
}
System.out.println("Longest repeating sequence: "+lrs);
}
- System.out.println(str);
for (int i = start; i < end; i++)
{
//Swapping the string by fixing a character
str = swapString(str,start,i);
//Recursively calling function generatePermutation() for rest of the characters
generatePermutation(str,start+1,end);
str = swapString(str,start,i);
}
String str = "FUNS";
int len = str.length();
int temp = 0;
int number= len*(len+1)/2;
String arr[] = new String[number];
for(int i = 0; i < len; i++) {
for(int j = i; j < len; j++) {
arr[temp] = str.substring(i, j+1);
temp++;
}
}
System.out.println("All subsets for given string are: ");
for(int j = 0; j < arr.length; j++) {
System.out.println(arr[j]);
}
java.text.
format -date to specific format parse -String to date
Date startDate = formatter.parse(s1);
Date endDate = formatter.parse(s2);
long diffInMilliSec = endDate.getTime() - startDate.getTime();
long seconds = (diffInMilliSec / 1000) % 60;
long minutes = (diffInMilliSec / (1000 * 60)) % 60;
long hours = (diffInMilliSec / (1000 * 60 * 60)) % 24;
long days = (diffInMilliSec / (1000 * 60 * 60 * 24)) % 365;
long years = (diffInMilliSec / (1000l * 60 * 60 * 24 * 365));
File file = new File()
file.exists()
file.setWritable
file.setExecutable
file.setReadable
BufferedReader reader2 = new BufferedReader(new FileReader("C:\file2.txt"));
String line1 = reader1.readLine();
String line2 = reader2.readLine();
FileInputStream inStream = new FileInputStream(new File("C:/SourceFile.txt"););
FileOutputStream outStream = new FileOutputStream(new File("C:/des.txt"););
byte[] buffer = new byte[1024];
int length;
while ((length = inStream.read(buffer)) != -1)
{
outStream.write(buffer, 0, length);
}
Set
intersectionSet.retainAll(set);
move to next line
System.lineSeparator();
class MyComparator implements Comparator<Student>
{
@Override
public int compare(Student s1, Student s2)
{
if(s1.id == s2.id)
{
return 0;
}
else
{
return s2.perc_Of_Marks_Obtained - s1.perc_Of_Marks_Obtained;
}
}
}
byte: The byte
data type is an 8-bit signed two's complement integer. It has a minimum value of -128 and a maximum value of 127 (inclusive). The byte
data type can be useful for saving memory in large arrays, where the memory savings actually matters. They can also be used in place of int
where their limits help to clarify your code; the fact that a variable's range is limited can serve as a form of documentation.
short: The short
data type is a 16-bit signed two's complement integer. It has a minimum value of -32,768 and a maximum value of 32,767 (inclusive). As with byte
, the same guidelines apply: you can use a short
to save memory in large arrays, in situations where the memory savings actually matters.
int: By default, the int
data type is a 32-bit signed two's complement integer, which has a minimum value of -231 and a maximum value of 231-1. In Java SE 8 and later, you can use the int
data type to represent an unsigned 32-bit integer, which has a minimum value of 0 and a maximum value of 232-1. Use the Integer class to use int
data type as an unsigned integer. See the section The Number Classes for more information. Static methods like compareUnsigned
, divideUnsigned
etc have been added to the Integer
class to support the arithmetic operations for unsigned integers.
long: The long
data type is a 64-bit two's complement integer. The signed long has a minimum value of -263 and a maximum value of 263-1. In Java SE 8 and later, you can use the long
data type to represent an unsigned 64-bit long, which has a minimum value of 0 and a maximum value of 264-1. Use this data type when you need a range of values wider than those provided by int
. The Long
class also contains methods like compareUnsigned
, divideUnsigned
etc to support arithmetic operations for unsigned long.
float: The float
data type is a single-precision 32-bit IEEE 754 floating point. Its range of values is beyond the scope of this discussion, but is specified in the Floating-Point Types, Formats, and Values section of the Java Language Specification. As with the recommendations for byte
and short
, use a float
(instead of double
) if you need to save memory in large arrays of floating point numbers. This data type should never be used for precise values, such as currency. For that, you will need to use the java.math.BigDecimal class instead. Numbers and Strings covers BigDecimal
and other useful classes provided by the Java platform.
double: The double
data type is a double-precision 64-bit IEEE 754 floating point. Its range of values is beyond the scope of this discussion, but is specified in the Floating-Point Types, Formats, and Values section of the Java Language Specification. For decimal values, this data type is generally the default choice. As mentioned above, this data type should never be used for precise values, such as currency.
boolean: The boolean
data type has only two possible values: true
and false
. Use this data type for simple flags that track true/false conditions. This data type represents one bit of information, but its "size" isn't something that's precisely defined.
char: The char
data type is a single 16-bit Unicode character. It has a minimum value of '\u0000'
(or 0) and a maximum value of '\uffff'
(or 65,535 inclusive).